Almost topological classification of finite-to-one factor maps between shifts of finite type

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sofic and Almost of Finite Type Tree-Shifts

We introduce the notion of sofic tree-shifts which corresponds to symbolic dynamical systems of infinite trees accepted by finite tree automata. We show that, contrary to shifts of infinite sequences, there is no unique minimal deterministic irreducible tree automaton accepting an irreducible sofic tree-shift, but that there is a unique synchronized one, called the Shannon cover of the tree-shi...

متن کامل

On Finite-to-one Maps

Let f : X → Y be a σ-perfect k-dimensional surjective map of metrizable spaces such that dimY ≤ m. It is shown that, for every integer p ≥ 1 there exists a dense Gδ-subset H(k,m, p) of C(X, I k+p ) with the source limitation topology such that each fiber of f△g, g ∈ H(k,m, p), contains at most max{k+m−p+2, 1} points. This result provides a proof of Hypothesis 1 and Hypothesis 2 from [1].

متن کامل

On the Definition of Relative Pressure for Factor Maps on Shifts of Finite Type

We show that two natural definitions of the relative pressure function for a locally constant potential function and a factor map from a shift of finite type coincide almost everywhere with respect to every invariant measure. With a suitable extension of one of the definitions, the same holds true for any continuous potential function.

متن کامل

Tree-shifts of finite type

A one-sided (resp. two-sided) shift of finite type of dimension one can be described as the set of infinite (resp. bi-infinite) sequences of consecutive edges in a finite-state automaton. While the conjugacy of shifts of finite type is decidable for one-sided shifts of finite type of dimension one, the result is unknown in the two-sided case. In this paper, we study the shifts of finite type de...

متن کامل

Smooth Classification of Geometrically Finite One-dimensional Maps

The scaling function of a one-dimensional Markov map is defined and studied. We prove that the scaling function of a non-critical geometrically finite one-dimensional map is Hölder continuous, while the scaling function of a critical geometrically finite one-dimensional map is discontinuous. We prove that scaling functions determine Lipschitz conjugacy classes, and moreover, that the scaling fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ergodic Theory and Dynamical Systems

سال: 1985

ISSN: 0143-3857,1469-4417

DOI: 10.1017/s0143385700003114